
More Bang For Your Buck(et): Fast and
Space-efficient Hardware-accelerated
Coarse-granular Indexing on GPUs

Justus Henneberg
Johannes Gutenberg University

Mainz, Germany
henneberg@uni-mainz.de

Felix Schuhknecht
Johannes Gutenberg University

Mainz, Germany
schuhknecht@uni-mainz.de

Rosina Kharal
University of Waterloo

Waterloo, Canada
rosina.kharal@uwaterloo.ca

Trevor Brown
University of Waterloo

Waterloo, Canada
trevor.brown@uwaterloo.ca

Abstract—In recent work, it has been shown that NVIDIA’s
raytracing cores on RTX video cards can be exploited to
realize hardware-accelerated lookups for GPU-resident database
indexes. This is done by materializing all keys as triangles in
a 3D scene. Lookups are performed by firing rays into the
scene and utilizing the built-in index structure to detect collisions
with triangles in a hardware-accelerated fashion. While this
approach, called RTIndeX (or RX for short), is indeed promis-
ing, it currently suffers from three limitations: (1) significant
memory overhead per key, (2) slow range lookups, and (3) poor
updateability. In this work, we show that all three problems
can be tackled by a single design change: Generalizing RX to
become a coarse-granular index cgRX, which no longer indexes
individual keys, but key buckets. We show that representing
buckets in 3D space such that the lookup of a key is performed
both correctly and efficiently is highly nontrivial and requires a
careful orchestration of positioning triangles and firing rays in a
specific sequence. Our experimental evaluation shows that cgRX
offers the most bang for the buck(et) by providing a up to 6.9⇥
higher ratio of throughput to memory footprint than comparable
baselines (that support range lookups). At the same time, cgRX
improves the range-lookup performance over RX by up to 15⇥
and offers practical updatability that is up to 5.6⇥ faster than
rebuilding from scratch.

Index Terms—Database indexing, GPUs, raytracing

I. INTRODUCTION

Utilizing hardware accelerators in creative ways to speed up
database operations has become increasingly popular over the
last few years. A good example for this trend is RTIndeX [1]
(or RX for short), which is a hardware-accelerated index-
ing mechanism that exploits the raytracing cores present on
modern NVIDIA RTX video cards. The core idea of RX is
as follows: To index a set of key-rowID pairs, each key is
represented by a corresponding triangle in a 3D scene. Then,
each triangle is associated with a corresponding rowID. To
perform a lookup, a ray is fired through the area in the 3D
scene where the triangle representing the key is expected.
If it collides with a triangle, the lookup is a hit, and the
corresponding rowID is retrieved.

To perform collision detection between rays and triangles
efficiently, the video card (GPU) can create and utilize a spe-
cial tree-based index structure in hardware, called a bounding
volume hierarchy (BVH), which indexes all triangles in the

3D scene. As shown in [1], RX has two advantages over
traditional software-based GPU-resident index structures such
as [2]–[4]: (a) The construction and querying of the BVH
is built-in. Consequently, no complex manual hand-crafting
of a highly parallel GPU-resident index structure is required.
(b) Both the BVH traversal as well as the ray-intersection tests
with the candidate triangles are hardware-accelerated by the
dedicated raytracing cores, speeding up the lookup process
over software-based implementations in several cases [1].
However, unfortunately, the approach also currently faces a
set of limitations.

��

��$�#�$�#�'����
�
�

�

�

�

�

	




�

�

�
�
�
 
"
&
��
 
 
$
!
"
��
$
��
�
�
�

��

�

��

��

�����

�%���

(a) Memory footprint

� 	 ��
�#���!�����! 

�

��

	�


�

��

���

���

�	�

��
��

��
�$�

��
�"

�
���
��

�"
��
!��

��
��

 �

��
��
�

(b) Range lookups

� � ��
����������������

�

����

����

����

	���


���

��
��

��
���
�
��
��

�

(c) Updates

Fig. 1: Limitations of RX: Memory overhead, range lookups,
and lookup performance after updates [1].

First of all, the memory overhead per key of RX is high
since a single 8B integer key is represented as a triangle
described by nine 4B floats, resulting in 36B per key. Conse-
quently, 78% of the key representation is actually overhead.
In the left plot in Figure 1, which has been generated from the
results of [1], we can see that the traditional index structures
have a significantly smaller memory footprint than RX, which
is mainly due to having less overhead per key. As memory is
scarce on GPUs, this can be a limitation for many applications.
Second, range lookups are currently a weakness of RX. In
the middle plot in Figure 1, we can see that for all tested
range sizes, the B+-tree outperforms RX. The reason for this
is that a range lookup in RX requires a large number of
ray intersection tests with candidate triangles if its selectiv-

Preprint of the version accepted at IEEE ICDE 2025



ity is low. In contrast, a B+-tree simply performs a single
tree traversal for the lower bound key and then sequentially
scans the leaf level. Third, RX is very sensitive to updates.
Interestingly, the problem is not the cost of performing the
updates, but a severe drop in lookup performance after the
updates have been applied. The right plot in Figure 1 shows
this by performing a batch of lookups after applying a varying
number of updates: The more updates have been applied, the
more the lookup performance deteriorates, up to a slowdown
of 78⇥ over no updates. The reason for this is that the BVH
update procedure only scales the existing bounding volumes
to reflect the updates instead of restructuring the BVH. This
can heavily increase the number of intersection tests that must
be carried out during lookups.

A. Challenges of Hardware-accel. Coarse-granular Indexing

Interestingly, the aforementioned limitations can be ad-
dressed by making a single design change: Instead of cre-
ating a fine-granular index RX, which maps each individual
key/triangle to its rowID, we propose to generalize the concept
to a coarse-granular index cgRX, which indexes groups of
keys instead, but still retains hardware acceleration. Precisely,
each group is represented by a single key/triangle, which then
maps to a separately stored bucket of key-rowID pairs. This
design change drastically reduces the memory footprint of
the structure — for example, for a bucket size of eight, the
memory overhead decreases from 78% in RX to only 36%
in cgRX, since we only need one additional 36B triangle for
every bucket of eight 8B keys. As the number of triangles
correlates with the size of the generated BVH, cgRX also
constructs a significantly smaller BVH than RX, reducing the
traversal time. Of course, additional cost must be factored in
for post-filtering a retrieved bucket for the key(s) of interest.
Still, by adjusting the granularity at which keys are grouped,
we can balance the cost of traversing the BVH, the cost
of searching the bucket, and the overall memory footprint
depending on the requirements of the environment.

Note that while the basic principle of coarse-granular in-
dexing is straightforward, mapping it to hardware-accelerated
raytracing, which we propose in this work in form of cgRX, is
highly non-trivial. As we no longer materialize all keys in the
scene, but only a single representative key for each bucket, the
central challenge is to ensure that the lookup procedure still
detects all hits and misses correctly. As we will see, depending
on the situation, this requires firing a sequence of up to five
rays from specific positions in specific directions. Since at the
same time, the performance overhead of a lookup must remain
small, we will apply a set of delicate optimizations to both the
triangle arrangement as well as the ray firing procedure.

B. Contributions and Structure of the Paper

In summary, we make the following contributions: (1) After
recapping RX in Section II, we present cgRX, our new
hardware-accelerated coarse-granular index for NVIDIA RTX
GPUs in Section III, which supports 64-bit keys as well as
point and range lookups. We first discuss the construction and

lookup procedure of a naive representation, which speeds up
the navigation through the 3D scene by introducing additional
marker triangles. (2) Based on that, we present an optimized
representation, which avoids the materialization of additional
marker triangles altogether. Instead, we turn a subset of rep-
resentatives into implicit markers. This is done by (a) moving
certain representatives and (b) introducing auxiliary represen-
tatives in the scene. The evaluation shows that the optimized
representation improves both lookup performance and memory
footprint for very sparse key sets. (3) We present an extension
called cgRXu to support efficient batch-wise updates (inserts
and deletes) in Section IV. Insertions and deletions are handled
by organizing buckets as a linked list of physical nodes, which
are attached (or detached) on demand. By this, updates to
the BVH and hence the extreme deterioration of the lookup
performance is avoided. (4) As cgRX provides a set of
configuration parameters, we analyze their impact for a
variety of key distributions in Section V. Precisely, we analyze
the impact of (a) the optimizations, (b) the key mapping into
3D space, as well as (c) the bucket size. We also test the
robustness of the choice by evaluating 4560 different indexing
scenarios. (5) Using the best configuration(s), we perform an
extensive experimental evaluation against a set of state-of-
the-art baselines in Section VI. The evaluation analyzes (a) the
throughput to memory footprint ratio for point lookups, (b) the
range lookup performance, (c) the impact of batching, (d) the
impact of the hit rate, (e) the impact of lookup skew, and
(f) the update performance.

II. BACKGROUND

We start by discussing the working principle of the fine-
granular index RX [1], where we discuss both its construction
and lookup procedure. As both cgRX and RX use NVIDIA’s
OptiX computing API [5], [6] to program the raytracing
pipeline, the following implementation details will also be
relevant for the presentation of cgRX in Section III.

A. Construction of RX
Given a set of key-rowID pairs to index, the construction

happens in two steps: In the first step, the keys are transformed
into a set of corresponding triangles in the 3D scene, where for
each key k, RX creates a single isolated triangle. Practically,
this is done by writing the positions of the three corner points
of each triangle one after the other into a so-called vertex
buffer. The position of each triangle in the scene is computed
using a key mapping. [1] observed that this key mapping
cannot be arbitrary, but is limited to 23 bits in each dimension
to ensure correct floating-point arithmetic. Consequently, RX
uses a mapping where the 23 least significant bits of each
key k are treated as the x coordinate, the next 23 bits as the
y coordinate, and the 18 most significant bits as the z coor-
dinate, denoted as k 7! (k22:0, k45:23, k63:46). Geometrically
speaking, this key mapping arranges all triangles into rows
and planes. Note that to ease visualization, in the following
examples, we will use a simpler key mapping where the three
last bits of the key determine the x coordinate, the next two bits



X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7

Y=3

▲ ▲
▲▲▲
▲▲

▲ Y=2

▲ Y=1

▲ ▲ ▲ ▲ Y=0

221917

2 4 5 6

18

12

vertex 

buffer

▲ 17 5 12 2 19 22 19 4 6 19 19 19 18
primitive 

index 0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2: Example key set and associated triangle representation
for RX [1], followed by a lookup of key 4 returning rowID 7.

19 19
19 19

19
2

N0

N5 N2

N8 N3 N0

N1

N5 N6 N7
17
18

4
12

5
6

k2
4 5 6

12

17 18 1919191919 22

N6N1

N4N7

N2 N3 N4

N8

2D spatial view BVH representation

2 22

Fig. 3: Possible BVH for the scene in Figure 2.

determine the y coordinate, and the remainder determines the
z coordinate, i.e., k 7! (k2:0, k4:3, k63:5). Apart from mapping
the keys to triangles, each key k also must be associated
with its rowID r. This is done implicitly by materializing
the triangle of k at position r in the vertex buffer. This
position is called the primitive index, and it can be queried
later on. Figure 2 shows how the generated triangles look for
an example key set of 13 keys, as well as the state of the vertex
buffer. For example, key 4 is mapped to the triangle N4 at
position x = 4, y = 0, and z = 0. This triangle is materialized
in the vertex buffer at slot 7. This effectively associates key 4
with rowID 7.

In the second step, the aforementioned BVH is built on
top of the 3D scene. A BVH is a tree-like index structure
in which small, disjoint groups of triangles form the leaves.
Each group is then enclosed by a 3D cuboid, a so-called
bounding volume. These bounding volumes are then iteratively
grouped and enclosed by larger bounding volumes until only
the root bounding volume remains. To construct the BVH, the
vertex buffer is passed to optixAccelBuild(), which then
indexes all individual triangles in the buffer without any further
involvement of the programmer. Figure 3 visualizes how the
generated BVH could look like (in 2D) for the example key
set. In the example, the triangle representing key 4 is enclosed
by the small bounding volume N5 first, next by the larger
volume N2, and finally by the root volume N0.

B. Lookups in RX
Using the generated BVH, NVIDIA’s OptiX is able to

quickly find intersections between triangles and rays via hard-
ware acceleration. Therefore, RX maps each lookup operation
to a corresponding ray-triangle intersection problem. A ray
is defined by its point of origin o and a three-dimensional
direction vector d. To perform a point lookup of key k, one

X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7

Y=3

▲ ▲ ▲▲▲
▲▲ ▲ Y=2

▲ Y=1

▲ ▲ ▲ ▲ Y=0

221917

2 4 5 6

18

12

key 2 4 5 6 12 17 18 19 19 19 19 19 22

rowID 3 7 1 8 2 0 12 6 9 10 4 11 5

▲ 5 17 19 - 22
primitive 

index 0 1 2 3 4i
key-rowID  

array

Representative  

buffer

Fig. 4: Example key set and associated triangle representation,
followed by a lookup of key 2 which returns rowID 3. The
representative N5 of bucket 0 is located in the same row as
the searched key 2. Row markers are hidden for simplicity.

first computes the 3D position p associated with k using
the key mapping, and then selects the ray parameters o and
d so that the ray passes through p. If a triangle exists at
position p, the ray will intersect this triangle and retrieve the
associated rowID. To prevent a ray from extending beyond a
single triangle and producing false positives, OptiX provides
an option to limit a ray to a specified length. Similarly, a range
lookup [l, u] can be performed by firing one or multiple rays
in parallel to the x-axis, starting at the position associated
with the lower bound l, and limiting the ray to not extend
beyond the upper bound u. This way, only the triangles that
are located between the given bounds will be hit, and we
eventually obtain all rowIDs that are relevant to the lookup.
As is typical for GPU-resident indexes, RX implements batch
lookups to improve GPU utilization, where each lookup is
performed by a single thread.

Note that the execution time of a ray traversal depends on
the shape of the BVH, and ultimately on the key distribution.
Average case analyses for ray traversal times following several
common BVH construction algorithms are surveyed in [7].

III. COARSE-GRANULAR RX
Let us now discuss the specifics of cgRX. Using a running

example, we will present two different 3D scene representa-
tions that cgRX can generate and query: A naive representa-
tion, and an optimized representation which requires fewer
rays to be cast in certain situations while also having a lower
memory footprint.

Just like RX, cgRX uses a key mapping to uniquely
represent each key as a triangle on an integer grid, which is
exemplified in Figure 4. However, in contrast to RX, not all
keys are actually materialized as triangles. An array of keys
and rowIDs is sorted and logically partitioned into equally-
sized buckets (of size 3), and only the last key in each
bucket is inserted as a bucket representative, shown as a black
triangle Nk. All remaining keys are not materialized in the
scene. We still visualize them as gray triangles Nk. As a



consequence of this design, the number of triangles we need to
store in the vertex buffer is greatly reduced over RX which, in
turn, reduces the size of the BVH. At the same time, looking
up a key k becomes more complex, since there is no guarantee
that there will be a triangle at the position p associated with k.
Instead, we need to search for the next bucket representative,
which is always larger than or equal to k. So, the bucket
representative either has to (1) be in the same row, but have
a larger or equal x coordinate than p, or (2) be on the same
plane, but have a larger y coordinate than p, or (3) be on a
different plane and have a larger z coordinate than p.
Case (1) is visualized in Figure 4 by showing the lookup
of key 2, where the triangle N2 does not actually exist in the
scene: To locate the bucket representative, we cast a single ray
along the positive x-axis, starting our ray slightly left of N2.
The ray intersects N5, which is the first triangle in the vertex
buffer, and is therefore associated with primitive index 0 and
hence bucket 0. We then search bucket 0 to find that key 2
occurs at rowID 3 in the original table (column).

X= -1 X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7

Y=3

▲ ▲ ▲ ▲▲▲
▲▲ ▲ Y=2

▲ Y=1

▲ ▲ ▲ ▲ ▲ Y=0

221917

2 4 5 6

18

R0

R1

12

key 2 4 5 6 12 17 18 19 19 19 19 19 22

rowID 3 7 1 8 2 0 12 6 9 10 4 11 5

▲ 5 17 19 - 22
primitive 

index 0 1 2 3 4

▲ R0 R1 - - -Marker buffer

key-rowID  

array

Representative  

buffer

i

Fig. 5: Lookup of key 6 which returns rowID 8. The rep-
resentative N17 of the corresponding bucket 1 is located in
a different row as the searched key 6. This row is quickly
identified using marker 4R1.

Case (2), depicted in Figure 5, is more complex: When
attempting to find key 6, the first ray fails to hit a repre-
sentative in the same row. Thus, the next representative must
be the leftmost triangle in the next populated row. To allow
efficient discovery of the next populated row, we introduce
row markers 4R into the scene: If a row contains at least
one representative, we add a triangle at x = �1 in the same
row. With the help of row markers, we can easily locate the
next populated row by casting a second ray along the y-axis
starting in the subsequent row at x = �1.

After intersecting 4R1 at y = 2, we cast a third ray from
y = 2, x = 0 to find the first representative of this row, which
hits triangle N17 associated with bucket 1. Note that in the
figure, the y = 2 row contains multiple triangles that could be
intersected by the ray. However, we are only interested in the
leftmost intersection, i.e., the one closest to the ray origin. This

closest-hit discovery is a fundamental operation in computer
graphics, and therefore, natively supported by OptiX.
Case (3) is similar to case (2). It is shown in Figure 6, where
a lookup of key 22 is performed on an extended key set. If
the second ray fails to hit a row marker, there are no more
populated rows on this plane. Therefore, we now need to find
the next populated plane. Similar to what we did with rows, we
also mark every populated plane with a plane marker 4P at
x = �1 and y = �1. This allows us to cast a ray along the z-
axis to discover 4P1, followed by two more rays: One ray cast
along the y-axis locates the next populated row via 4R2, and
the final ray along the x-axis intersects triangle N93 associated
with bucket 4.

key 2 4 5 6 12 17 18 19 19 19 19 19 22 91 93

rowID 3 7 1 8 2 0 12 6 9 10 4 11 5 17 15

▲ R0 R1 - - R2

▲ 5 17 19 - 93
primitive 

index 0 1 2 3 4

P0 - - - P1Marker buffer

Representative  

buffer

key-rowID  

array

X= -1 X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7

▲ ▲ ▲ Y=3

▲ ▲ ▲ Y=2

Y=1

▲ ▲ Y=0

▲P1

67 69

80 81 83

X= -1 X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7

Y=3

Y=2

Y=1

Y=0

93

X= -1 X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7

Y=3

▲ ▲ ▲ ▲▲▲
▲▲ ▲ Y=2

▲ Y=1

▲ ▲ ▲ ▲ ▲ Y=0

▲ Y= -1

221917

2 4 5 6

18

R0

R1

12

P0

91R2

Fig. 6: Lookup of key 22 when the key set is spread across
multiple planes. The example shows the worst case where five
rays are required to perform the lookup.

Let us also discuss how to handle duplicates: If the same
key occurs multiple times, it can happen that the duplicates of
the key span over multiple buckets. This is the case for key 19
in Figure 6, which occurs five times in total and consequently
spans over the buckets 2 and 3. To handle this situation, we
create a representative only for the first of the two buckets.
A lookup for 19 will then find this first representative and
consequently jump to the start of bucket 2 in the sorted key-
rowID array. Scanning the bucket retrieves the first duplicate
of 19. Scanning further will identify all remaining duplicates
of 19 across buckets. The scan stops as soon as the first key
larger than 19 is found, namely 22. This ensures that all
duplicates are visited. Similarly, we only generate a marker
for the first representative in the row/plane to avoid duplicate
markers.

A. Implementation Details

Construction. In Algorithm 1, we formalize the construction
procedure as pseudo-code. We use the notation k.x to refer to
the bits of k that are mapped to the x-coordinate. These bit
operations are required several times: In lines 2 and 3, we
check if all representatives lie on the same plane or even in



the same row, in which case we can skip the allocation and
generation of plane/row markers. The algorithm then loops
over all buckets and creates a representative for each bucket,
if necessary. In lines 13 and 15, we check whether the previous
key belongs to a different row/plane, in which case the current
key is the first of the current row/plane. The mkTri(x, y, z)
function creates a small triangle that is centered around the
point (x, y, z). Note that for simplicity, the pseudo-code does
not show the specific handling of the first iteration, where
there exists no previous representative. Of course, our actual
implementation handles this case correctly.

Algorithm 1: Construction of the naive representation
Input: keys, bucketSize
Output: reps, markers

1 minRep  keys[bucketSize - 1], maxRep  keys[len(keys) - 1]
2 multiLine  minRep.yz != maxRep.yz
3 multiPlane  minRep.z != maxRep.z
4 numBuckets  ceil(len(keys) / bucketSize)
5 allocate reps[numBuckets]
6 allocate markers[(multiLine + multiPlane) · numBuckets]
7 for bucketID  0 to numBuckets - 1 do in parallel
8 repIdx  min((bucketID + 1) · bucketSize, len(keys)) - 1
9 rep  keys[repIdx]

10 prevRep  keys[repIdx - bucketSize]
11 if rep != prevRep then
12 reps[bucketID] = mkTri(rep.x, rep.y, rep.z)
13 if multiLine and rep.yz != prevRep.yz then
14 markers[bucketID] = mkTri(-1, rep.y, rep.z)
15 if multiPlane and rep.z != prevRep.z then
16 markers[bucketID + numBuckets] = mkTri(-1, -1, rep.z)
17 return reps, markers

Lookups. Algorithm 2 shows the code responsible for
obtaining the bucketID for a given key. The xCast(x, y, z)
function internally delegates to OptiX to cast a ray with
direction (1, 0, 0) originating at (x, y, z). Its return value stores
whether a triangle was intersected by the ray and, if so,
exposes the primitive index as well as the coordinates of the
intersection point. yCast and zCast are defined analogously.
The first y-axis ray and the z-axis ray have to start in the next
row/plane, so we offset their origins by 1 in the appropriate
directions. Note that Algorithm 2 can also be used to answer
range lookups of the form [l, u]: We utilize the raytracing
approach to find the representative for l, which leads us to
the first bucket containing a value larger than or equal to l.
From there, we linearly scan the key-rowID array until we
hit the first key larger than u. If the lower bound l is larger
than the largest key, we can safely report an empty result.
cgRX always performs this scan by invoking a separate CUDA
kernel to spawn a group of 16 threads per lookup, which allows
loading (and potentially aggregating) neighboring entries very
efficiently.

Markers. Whenever all representatives share the same plane
or row, we can skip the generation of some or all markers. We
do so by retrieving the smallest representative and the largest
representative of the dataset and checking whether they span
across multiple rows (line 2) and multiple planes (line 3) by
inspecting their coordinates. During construction, we then add
row/plane markers only if they are actually required (lines 13-

16). The effect of this optimization is shown in Figures 4
and 5, which only contain row markers. Even so, in the worst-
case, the use of markers can still inflate the size of the BVH by
3x, which is a problem that we will address in the optimized
representation.

Algorithm 2: Point lookup in the naive representation
Input: key
Output: bucketID or MISS

1 minRep  keys[bucketSize - 1], maxRep  keys[len(keys) - 1]
2 if k < minRep then return 0
3 if k > maxRep then return MISS
4 sameRowHit  xCast(key.x, key.y, key.z)
5 if sameRowHit then return sameRowHit.primitiveIndex
6 nextRowHit  yCast(-1, key.y + 1, key.z)
7 if nextRowHit then
8 sameRowHit  xCast(0, nextRowHit.y, key.z)
9 return sameRowHit.primitiveIndex

10 nextPlaneHit  zCast(-1, -1, key.z + 1)
11 nextRowHit  yCast(-1, 0, nextPlaneHit.z)
12 sameRowHit  xCast(0, nextRowHit.y, nextPlaneHit.z)
13 return sameRowHit.primitiveIndex

Bucket Search. To search a bucket, cgRX supports both
linear search and binary search on buckets in column layout as
well as in row layout. However, our experimental evaluation
showed that both for small buckets of 4 entries and very
large buckets of 65,536 entries, binary search on a row layout
performs best, so we use this combination for the remainder
of the paper.

B. Optimized Representation

Depending on the key distribution, it is possible that a
single bucket spans multiple rows or even multiple planes.
This is the reason why we have to potentially fire multiple
rays to locate a representative. As firing more rays makes
the lookup more expensive, in the following, we propose an
optimized representation which addresses this problem while
potentially decreasing the memory footprint. The high-level
idea is based on two modifications which we are allowed to
perform in the scene without harming correctness: (1) Let r
be a representative and let k be the next key after r. Observe
that we can replace r by another representative r0 as long
as r < r0 < k, even if r0 is not a key itself. In other
words, we can move a representative as long as it does not
collide with the next key. (2) Let r and r0 be two adjacent
representatives with r < r0. Then we are allowed to insert
a new representative r00 between them so that r < r00 < r0.
Since r00 falls into the bucket represented by r0, we need to
associate r00 with the same bucketID as r0. Using these rules,
we are able to ensure that each populated row ends with a
representative in the last slot (at xmax), either by moving an
existing representative there (1), or by inserting a new one (2).
Consequently, when starting a lookup in a populated row, we
never have to fire more than a single ray as we will always find
a representative there, therefore requiring less rays along the y-
axis. Analogously, we can place a representative in the last slot
of each populated plane to reduce the number of rays along the
z-axis. At the same time, these newly inserted representatives



can also serve as row/plane markers since they are always
located at x = xmax or y = ymax, as long as we change the
respective offsets for yCast and zCast in Algorithm 2.

Algorithm 3: Construction of the optimized representation
Input: keys, bucketSize
Output: reps

1 minRep  keys[bucketSize - 1], maxRep  keys[len(keys) - 1]
2 multiLine  minRep.yz != maxRep.yz
3 multiPlane  minRep.z != maxRep.z
4 numB  ceil(len(keys) / bucketSize)
5 allocate reps[(1 + multiLine + multiPlane) · numB]
6 for bucketID  0 to numB - 1 do in parallel
7 repIdx  min((bucketID + 1) · bucketSize, len(keys)) - 1
8 rep  keys[repIdx]
9 nextKey  keys[repIdx + 1]

10 movable  nextKey.yz != rep.yz
11 prevRep  keys[repIdx - bucketSize]
12 nextRep  keys[repIdx + bucketSize]
13 needsRep  rep != prevRep or (movable and rep.x != xmax)
14 needsRowMark  !movable and rep.yz != nextRep.yz
15 needsPlaneMark  rep.y != ymax and rep.z != nextRep.z
16 if needsRep then
17 x if movable then xmax else rep.x
18 doFlip  movable and prevRep.yz != rep.yz
19 reps[bucketID]  mkTri(x, rep.y, rep.z, doFlip)
20 if multiLine and needsRowMark then
21 reps[bucketID + numB]  mkTri(xmax, rep.y, rep.z)
22 if multiPlane and needsPlaneMark then
23 reps[bucketID + 2 · numB]  mkTri(xmax, ymax, rep.z)
24 return reps

Construction. Algorithm 3 shows the pseudo-code for con-
structing this optimized representation. The code copies the
single-row/single-plane optimization from the naive variant
(lines 2 and 3), but instead of allocating a separate marker
buffer, it reserves additional space in the representative buffer
(line 5), as the optimized variant does not differentiate between
representatives and markers.

For each bucket, we need to check several conditions before
placing the triangles. Following the observations listed above,
a representative can be moved to the end of the row if the next
key is not in the same row (line 10). This creates a special case
for handling duplicate representatives: In the naive variant, we
skipped insertion of all but the first representative to ensure
that no two representatives exist at the same coordinates.
In this variant, it is still possible to also insert the last
representative of a duplicate group if it can be moved away
from its initial position to the end of the row (line 13). If a
representative is the last in its row and it cannot be moved,
we have to explicitly insert a new representative at the end of
the row (line 14). For bucket b, this triangle is placed in slot b
+ numBuckets of the vertex buffer. Similarly, the bucket with
the last representative on a plane generates an additional plane
marker at x = xmax, y = ymax in slot b + 2 · numBuckets. If
this last representative happens to be located in the last row
of a plane (y = ymax), we can skip its generation, since it
coincides with the row marker (line 15).

In line 18, we perform a further optimization called triangle
flipping. It applies whenever a representative can be moved to
the end of the row while also being the only representative in
this row. In this case, any ray being fired in the corresponding

row will always hit this representative. Therefore, we do not
need to fire this ray at all. To inform the lookup procedure of
this fact, we “flip” the triangle by inverting the order in which
the corner points are stored in the buffer (the winding order)
from clockwise to counter-clockwise. This way, any ray fired
along the y-axis will recognize the hit as a back-side hit as
opposed to a front-side hit, and can react accordingly.

Figure 7 shows the optimized representation for our example
key set. In comparison to the naive representation in Figure 4,
we can see three differences: One representative is newly
inserted as a marker (N7) while another representative is
moved (N23 replaces the representative N22 to its left) to
serve as another marker. In exchange, no explicit markers
are present anymore at x = �1. Let us revisit the special

key 2 4 5 6 12 17 18 19 19 19 19 19 22

rowID 0 1 2 3 4 5 6 7 8 9 10 11 12

▲ 5 17 19 - 23
primitive 

index 0 1 2 3 4

key-rowID  

array

i � (i � 5 + 1)i
i � i

X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7

Y=3

▲ ▲ ▲▲▲
▲▲ ▲ ▲ Y=2

▲ Y=1

▲ ▲ ▲ ▲ ▲ Y=0

221917

2 4 5 6

18

12

7

23

Repre- 

sentative  

buffer

Original representatives New representatives

7 - - - -

5 6 7 8 9

Fig. 7: Visualization of the optimized representation.

cases from Algorithm 3: For the first bucket with bucketID 0,
the representative N5 must be materialized, as it is not a
duplicate. However, we cannot materialize it at the end of
the row, as its next key N6 is located in the same row. Still,
as N5 is the last representative of the row, it is responsible
for creating a new representative N7 which serves as the row
marker. Key 19 in row y = 2 appears multiple times, but
since none of its instances are the last key in the row, there is
no difference in how the representatives are placed compared
to the naive algorithm. Instead, we move representative N22,
which happens to be the last key in the row, to the end of
the row, producing N23. Finally, we do not insert any plane
markers, since all keys reside on a single plane. If we had to
generate a plane marker, it would be located in the very last
slot of the plane at x = 7 and y = 3. A lookup of key 6 (hit)
is now answered by firing a single ray (hitting N7), instead
of three rays. Note that the primitive index i = 5 of N7
is greater than the number of buckets, since N7 is a newly
inserted representative that has been stored after all regular
representatives in the vertex buffer. Consequently, the primitive
index has to be re-mapped to the corresponding bucketID by
means of

i 7!

8
><

>:

i� 2 · numBuckets + 1 if i � 2 · numBuckets
i� numBuckets + 1 if i � numBuckets
i otherwise

which is cheap and easy to compute on a GPU.

IV. HANDLING UPDATES

The presentation thus far has focused on a sorted array-
based representation, but inserting into a globally sorted array



requires shifting keys and rebuilding the BVH. Both are
prohibitively expensive. So, to facilitate efficient updates, we
propose cgRXu, a node-based variant of this representation.

▲ 4 7 15 23
primitive

index 0 1 2 3!

…

Representatives

Representative nodes

Linked nodes

key 2 4 - - max=4 next
ptrrowID 0 1 - - size=2

5 6 7 - max=7 next
ptr2 3 4 - size=3

key 8 9 12 15 max=9 next
ptrrowID 5 6 7 8 size=2

17 18 22 23 max=23 next
ptr9 10 11 12 size=4

X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7

▲ ▲ ▲ ▲ Y=2

▲ ▲ ▲ ▲ ▲ Y=1

▲ ▲ ▲ ▲ ▲ Y=0

2217

2 4 5 6

18

12

7

23

15

key 12 13 15 - max=23 next
ptrrowID 7 13 8 - size=3

- - - - max=0 next
ptr- - - - size=0

-

-

8 9 13

Insert <key 13, row 13>

-

-

Fig. 8: Node-based representation for updates. Memory is
partitioned into a green region where the data structure is
initially built using contiguous nodes, and a blue region that
is used to extend buckets when nodes are split.

The high level idea is to implement each bucket as a linked
list of nodes. Nodes have a fixed size N , a tuneable parameter
that we analyze in our experiments. Each node contains sorted
keys and corresponding rowIDs, a next pointer, a maxKey and
a current size. For each bucket, an initial representative node is
created, and subsequent insertions into a bucket will cause this
node to be split, resulting in the creation of a new node, and
the movement of half of the keys into that new node. This is
illustrated in Figure 8, which depicts a state some time after
the initial construction of the index, after some subsequent
insertions have happened, and a key-rowID pair h13, 13i is
inserted. Nodes in a bucket can be split multiple times, and all
nodes corresponding to a bucket are linked together using their
next pointers, starting with the representative node. The keys
in a bucket are maintained in sorted order across all nodes.
This way, a point lookup terminating at a representative node
that has been split can simply follow the next pointers to locate
the correct node with the relevant key, without requiring the
BVH or buckets to be updated.

Rather than allocating each node individually, it is more
efficient to allocate a large slab of memory, and manually
partition it into nodes. Once this region has been used entirely,
we enlarge it by allocating additional memory. We divide this
large allocation into two subregions, one for representative
nodes (representative node region), and the other for allocating
new nodes to be appended to linked lists (linked node region).
Note that the next pointer of nodes can only be directed into
the linked node region, since representative nodes are always

the heads of their respective linked lists.

Initial construction. Given a sorted array of key-rowID pairs
for initial bulk loading, we first divide them into buckets of
size N/2 (half the node size—a tunable parameter). Note
that this partitions the keys in a distribution-adaptive way,
by evenly dividing the keys being bulk loaded across buckets,
rather than evenly dividing the key range. In other words, every
N/2-th key in the input array becomes the maxKey of a node.
A special overflow bucket with maxKey 1 is added to handle
keys larger than any key in the initial bulk load.

We then reserve space for one node in the representative
node region for each bucket, and fill the node with its corre-
sponding key-rowID pairs in parallel. Note that each represen-
tative triangle effectively points directly to the representative
node for its bucket. More precisely, since nodes are stored
contiguously in the representative node region, the triangle’s
primitive index can be multiplied by the size of a node, and
added to the base address of the representative node region,
to obtain the starting address of the representative node.

Lookups. The raytracing procedure to locate a bucket is
unchanged, except for the node address calculation explained
above. We then traverse the bucket chain starting at the
representative node to find the last node where maxKey is
greater than the key we are looking for. If there are many
duplicates of a single key, these duplicates may span multiple
nodes, and they will all be found by this search procedure.

Insertion and deletion. Similar to lookups, keys to be
inserted or deleted are collected in a batch that is then sent to
the GPU in an array. The keys are then sorted. Any key that
is both to be inserted and deleted in a batch can simply be
eliminated from the batch. The actual insertion or deletion is
handled by a CUDA kernel that dedicates one thread to each
bucket in the current representation. The thread responsible
for bucket i does two binary searches on the batch’s sorted
keys to identify the sequence of keys it is responsible for, and
traverses the nodes corresponding to bucket i, deleting and
inserting these keys as appropriate. An advantage of allocating
one thread per bucket is that there are no concurrency issues
associated with updating a bucket (for instance, neither atomic
read-modify-write instructions nor locks are needed).

Deletions are processed first, as by doing so, space may
be created to facilitate insertions without splitting. For each
key, the thread first locates the appropriate node in the list by
comparing with the maxKey of each node. Then, it performs
binary search to locate the appropriate index within the ap-
propriate node. Deletion of a key results in keys to the right
being shifted to the left. Insertion of a key results in shifting
to the right. As explained above, insertion into a full node
splits the node, changing its next pointer to point to a new
node, and moving half of the keys into the new node. The
new node receives the old node’s maxKey, and the old node’s
largest key after the split becomes its new maxKey. If the new
node is being inserted in the middle of a list, its next pointer
is set to point to the following node.



V. PARAMETER CONFIGURATION

In the following, we will experimentally analyze the impact
of all configuration parameters of cgRX. Then, we will use
the best configuration(s) in Section VI.

We perform all of the following experiments on an NVIDIA
RTX 4090 GPU with 24 GB of VRAM and 128 raytracing
cores. This GPU implements the most recent Ada Lovelace
architecture and is the fastest consumer RTX GPU currently
available, as consistently verified during the work on this
project. The CPU is an AMD ThreadRipper 3990X.

Unless specified otherwise, we generate a key set of
226 keys consisting of 32-bit or 64-bit unsigned integers. For
some fixed integer d, the first part of the key set consists of all
keys from 0 to d� 1 to reflect a dense key arrangement, and
the second part is picked uniformly and randomly from the
remaining value range to reflect a sparse key arrangement. In
the experiments, we vary the percentage of keys that are picked
uniformly from 0% to 100%, which we simply refer to as the
uniformity of the key set. We always shuffle the key sequence,
and the final position in the shuffled sequence determines a
key’s rowID. Lookups are drawn randomly from the key set,
and we perform 227 lookups by default. The rowIDs obtained
through the lookup are aggregated per-lookup, and then written
to a separate result buffer to test for correctness.

A. Key Mapping and 3D Representation
First, we compare the naive with the optimized represen-

tation of cgRX in terms of point-lookup performance to see
whether one variant performs consistently better than the other.
However, before that, we have to discuss the impact of the key
mapping. We identified that for the default key mapping used
in [1], namely k 7! (k22:0, k45:23, k63:46), the performance of
both variants was not competitive for sparser key distributions.
The reason for this is that the proprietary BVH construction
algorithm cannot choose a reasonable bounding volume layout
due to the data being largely uniform. This renders the first
(and non-avoidable) x-axis ray highly expensive. In Figure 9a,

ray

bounding 
volume 

bounding 
volume 

x

y

(a) No scaling.

ray

x

y

(b) Scaling the y-axis.

Fig. 9: The impact of scaling on the BVH structure (shown
for 2D). Red triangles must be tested for intersection.

we conceptually visualize such a disadvantageous clustering.
In the example, the x-axis ray has to perform costly inter-
section tests with an unnecessarily large number of triangles
since it also has to check for intersections in neighboring rows.
Ideally, the bounding volumes would primarily extend along
the x-axis, such that only the triangles in the current row have

to be checked for intersection, as shown in Figure 9b. To
incentivize such a grouping, we simply adjust the key mapping
slightly by multiplying both the y-coordinate k45:23 and the
z-coordinate k63:46 with a large, carefully chosen constant,
resulting in the mapping k 7! (k22:0, 215 · k45:23, 225 · k63:46).
Consequently, in all upcoming experiments, we only use the
scaled mapping.

�����
	�
��
������
	

���
�������


	����������
��
�������

���
�������

����

 ��������"�����"���#�

�

	�

��

��

���

�	�

���

���

���
��
��

��

��� ����#���
��� ����#���

��� ����#��	�
��� ����#����


���!�������
����������

Fig. 10: Naive vs optimized representation for scaled key
mapping k 7! (k22:0, 215 · k45:23, 225 · k63:46).

Coming back to the initial comparison of the naive and
optimized representations, we can observe in Figure 10 that
for 32-bit key sets, both variants perform equally well. From
a geometric perspective, 32-bit keys are always arranged on
a single plane. The amount of rays for lookups is therefore
limited to three, with most lookups requiring only one ray.
Therefore, the optimized scene representation does not yield
significant improvements. However, for the 64-bit key sets
with a high uniformity (and hence, high sparsity), optimizing
the representatives significantly shortens the lookup procedure
and improves the performance. Inspecting the number of
individually fired rays for each variant revealed that for smaller
buckets, the optimized representation avoids firing the second
x-axis ray in most cases, because the previous y-axis ray hit
a flipped representative. Apart from performance, we can also
confirm that the optimized representation reduces the memory
footprint over the naive representation for sparse key sets: For
example, for 64-bit keys and a bucket size of 4, the optimized
representation saves 16% and 28% memory over the naive one
for a uniformity of 50% and 100%, respectively. Hence, we
will use only the optimized representation in the following.

B. Bucket Size

Next, we identify the best bucket size for cgRX. As our
index aims at providing high space efficiency while achiev-
ing competitive lookup performance, intuitively, we want to
choose the largest bucket size that still offers a good through-
put. To quantify how well our index balances this trade-off,
we introduce a metric called throughput per memory footprint.
We take the throughput as entries looked up per second and
divide it by the memory footprint of the structure in bytes.



By this, we essentially measure how an index structure “buys”
throughput performance by consuming additional memory (for
cgRX, this means adding representatives in the scene).

bucket size

(a) Point-lookup time.

bucket size

(b) Throughput per memory footprint.

Fig. 11: Robustness of bucket size across 19 key distributions.

To analyze which bucket size performs best, we evaluate
twelve bucket size configurations against nineteen different
key distributions, varying from uniform to highly skewed
and mixtures of both. Further, we test both 32-bit and 64-
bit keys, five different key set sizes (224 to 228), and two
GPU generations (RTX 4090 and A6000), resulting in 4560
test combinations in total. The results show that across the
board, a universal decision on the best performing bucket size
can be made. Due to space restrictions, in Figure 11, we can
show only the results for 32-bit keys and a key set size of
226 on the RTX 4090. For each configuration, we show the
relative performance in comparison to the best performing
bucket size, where Figure 11a shows the pure point lookup-
time, while Figure 11b shows the throughput per memory
footprint metric. We can see that for the latter, a bucket size of
25 = 32 performs best in the vast majority of cases. Even when
inspecting only the lookup performance, a bucket size of 32 is
among the best choices. However, we can also see that for a
significantly larger bucket size of 28 = 256, the throughput per
memory footprint is still 85% of the best option. Consequently,
we also consider this configuration further as a space efficient
alternative.

Size recommendation. Based on our findings, cgRX uses a
bucket size of 32 by default for the remaining experiments,

which optimizes the throughput per memory footprint ratio.
Also, we show the results for a bucket size of 256 as a space
efficient and performance-competitive alternative.

VI. EXPERIMENTAL EVALUATION

In the following, we evaluate how assorted configurations
of cgRX perform against a set of competitive baselines. Under
the update workload, we evaluate both cgRX and cgRXu. We
include the same baselines as in [1]: HT: A GPU-resident open
addressing hash table [4], [8], which performs cooperative
probing. The target load factor is set to the recommended 80%
(40% for updates). B+: A GPU-resident B+tree [9], [10]
performing cooperative 16-thread tree traversal and only sup-
porting 32-bit keys. SA: A GPU-resident Sorted Array [1]
which uses binary search for lookups. Note that all methods
that require the sorting of the input key-rowID array (cgRX,
B+, and SA) use CUB’s DeviceRadixSort [11] for this
purpose, and the cost for sorting is always included in the
reported times.

Method Point Range Mem 64-bit Bulk-load Updates
HT [4], [8] X ⇥ med X ⇥ X
B+ [9], [10] X X med ⇥ X X

SA [1] X X low X X rebuild
RX [1] X X high X X rebuild
RTScan

(RTc1) [12] ⇥ X high limited on CPU rebuild

cgRX X X low X X rebuild
cgRX-u X X low X X X

TABLE I: Overview of all tested indexes.

Of course, we also compare against the original fine-
granular RX. Additionally, we compare the range-lookup
performance against RTScan (RTc1) [12], another recently
published raytracing based indexing method which has been
specifically designed for that purpose. Instead of concur-
rently executing a large number of (single-threaded) lookups,
RTScan (RTc1) parallelizes a single range lookup by firing
a large number of rays at different positions concurrently,
where the number of concurrently fired rays depends on the
size of the range. To ensure a fair comparison for the case
where a single range lookup does not fully utilize the available
resources, we extended the original implementation to support
executing a batch of 32 range lookups concurrently. Note that
RTScan (RTc1) does not support point lookups out of the
box and hence, we cannot include it in the corresponding
experiments. Table I summarizes the core features of all
competitors.

A. Memory Footprint and Point-lookup Performance

One of our central motivations for cgRX was to reduce the
memory footprint of the original RX approach while providing
good performance. To find out whether cgRX achieves this
goal, Figure 12a shows the permanent memory footprint of all
methods on 32-bit key sets of different sizes (224, 226, and 228)
with varying uniformity (0%, 20%, and 100%). For cgRX,
we evaluate bucket sizes 32 and 256. While for 224 keys,
all indexes have a negligible memory footprint, for 226 keys,



�
��
�	�

�
��
��	

�

�
��
�
	

	�

��
��
�	�

��
��
��	

�

��
��
�
	

	�

��
��
�	�

��
��
��	

�

��
��
�
	

	�

�*!#��(!,����
%
����"�+�*%!�&'$!)+

	




�

�



�

(
!,
�
��
�
�
�

� �������

� ��������

��

��

��

��

(a) Memory footprint.

�
��
�	�

�
��
��	

�

�
��
�
	

	�

��
��
�	�

��
��
��	

�

��
��
�
	

	�

��
��
�	�

��
��
��	

�

��
��
�
	

	�

�*!#��(!,����
%
����"�+�*%!�&'$!)+

	

��

�	

��


		


��


�	


��

)
!$
�
��
$
(
�

� �������

� ��������

��

��

��

��

(b) Accumulated point-lookup time.

����
�
�

����
��
�

����
��

�

����
�
�

����
��
�

����
��

�

����
�
�

����
��
�

����
��

�

�,"$��*"/����
&
����#�.�,&" ')%"+.

�

0�

�




�

�

�

�

�
�
�	
� 
'
'
+
(
)
"&

+
��

�
&
+
)
"�

*
�	
��

*
�-

��
.
+
�
*
�
� �!������

�!��������

��

��

��

��

(c) Throughput per memory footprint.

Fig. 12: Comparison of memory footprint and point-lookup performance for key range [0, 232 � 1].


���
���


���
�
��


���
�	���


���
���


���
�
��


���
�	���


���
���


���
�
��


���
�	���

�) "��' +���

$
����!�*�)$ �%&# (*

�

	




�

�



'
 +

�
��

�
�

�

�������
�

������
��

��

��

��

(a) Memory footprint.


�
��
���


�
��
�
�

�


�
��
�	�

��


�
��
���


�
��
�
�

�


�
��
�	�

��


�
��
���


�
��
�
�

�


�
��
�	�

��

�(�!��&�*���

#
���� �)�(#��$%"�')

�




�

�

	��

	


	�

	�


��

'
�"

�
��
"
&
�

�������
�

������
��

��

��

��

(b) Accumulated point-lookup time.

���
�	�

���
��	�

���
�
		�

����
�	�

����
��	�

����
�
		�

����
�	�

����
��	�

����
�
		�

�* "��( -����
$
����!�,�*$ �%'# ),


	
.



	
	


	




	
�

�
�

��
��

%
%

)
&

'
 $

)
��

�
$

)
'
 �

(
��

��
(
�+

��
,

)
�

(
�
� ���������

����������

��

��

��

(c) Throughput per memory footprint.

Fig. 13: Comparison of memory footprint and point-lookup performance for key range [0, 264 � 1].

RX has by far the highest footprint between 2.5GiB (0%
uniformity) and 2.9GiB (100% uniformity). In comparison,
even for a rather small bucket size of 32, cgRX shows a signif-
icantly lower memory footprint of only around 0.7GiB, which
is already less than the footprint of B+ at around 1.1GiB. For
a bucket size of 256, cgRX even approaches the space-optimal
SA. For 228 keys, RX runs out of memory, while cgRX still
beats HT and stays on par with SA. B+ consumes almost
twice the amount of memory as the best cgRX configuration.

In the Figures 12b and 12c, we bring the point-lookup
performance into the picture. While Figure 12b showing the
accumulated point-lookup time alone reveals that cgRX has a
point-lookup performance somewhere between the remaining
range-lookup supporting structures, Figure 12c sets both mem-
ory footprint and point-lookup performance into perspective
by showing the previously introduced throughput per memory
footprint metric. We can see that cgRX clearly performs best
among all indexes supporting range lookups. For 224 keys,
the best configuration of cgRX has a throughput per memory
footprint that is 5⇥ higher than for RX, 3.5⇥ higher than for
B+, and 1.5⇥ higher than for SA. At 226 keys, the throughput
per memory footprint is still 3.4⇥ higher than for RX, 1.9⇥
higher than for B+, and 1.6⇥ higher than for SA. Only HT
outperforms cgRX by 2.5⇥. For 228 keys, where RX runs out
of memory, the improvement over B+ and SA is still around
1.5⇥. Note that we observe a similar trend for 64-bit keys
in Figure 13 where, unfortunately, we cannot include B+ as
it lacks the support for wide keys. Overall, we can see that
cgRX provides the best “bang for the buck” of all general-
purpose GPU-resident indexes, a property which is especially

important in the presence of scarce GPU memory.

B. Range-lookup Performance

Next, we analyze the range-lookup performance. We use a
32-bit key set of 226 keys with a uniformity of 0% (dense)
and vary the number of expected hits per range lookup from
20, which resembles a point lookup, to 224. We fire a batch
of 216 range lookups and report the normalized cumulative
lookup time, which is the total time of all range lookups of
the batch divided by the total number of retrieved entries, on
a logarithmic scale. We also include the range-lookup specific
baselines RTScan (RTc1) as well as a FullScan which just
scans the entire array and filters for the range of interest. HT
does not support range lookups and is therefore not included.

� � � 	
 	� 
� 
�
�*%��(�����('��
#�

	�,�

	�,�

	�,


	�,	

	��

	�	

#$
&"

�!
�+�

��
�)

"
��!
$$

 )
%�
(�"

��
�"

'�

�������
�
������
��
��
��

��
�����#�����	�
�)!!���#

Fig. 14: Range lookups on a dense 32-bit key range.
Figure 14 shows the results (cut off at 10ms). We can

see that for range lookups, cgRX (32) outperforms the direct



competitor RX for all tested bucket sizes. The reason for
this is that cgRX must perform only one point lookup per
range lookup, followed by a simple scan. In contrast, RX
must detect all qualifying entries in the collision detection
of its tracing procedure, which is prohibitively expensive. For
selectivities between 28 and 220 hits per range lookup, cgRX
is the best performing method. For example, for 28, it is more
than 9.9⇥ faster than RX, 4.2⇥ faster than SA, and 1.5⇥
faster than B+. As cgRX uses a cooperative scan just like B+,
the performance of both methods becomes almost the same
for lower selectivities. However, cgRX has the advantage that
all data is stored consecutively, while B+ scans individual leaf
nodes. Surprisingly, RTScan (RTc1) is even four orders of
magnitude slower than cgRX, as it is not able to properly
parallelize the batch of lookups. In fact, RTScan (RTc1) is
even slower than FullScan, showing that it is currently not
suited for answering batched range lookups, despite batched
lookups being a common workload on GPUs.

� 	
 	 	� 
	 
� 
�

$*#��'�%��"%%!*&(��

$
�

	�
+�

	�
+�

	�
+

	�
+�

	�
+�

)
 #

�
�&

�
'
�"

%
%

!
*

&
��

#
(
�

�������
�

������
��

����*�����"�

����*��	��"�

��

��

��

��

Fig. 15: Varying the number of lookups fired in a batch.

C. Varying the Batch Size
So far, we have used a batch size of 227 point lookups

and 216 range lookups. Depending on the application, smaller
or larger batches might also arrive, thus we now vary the
number of point lookups fired in a batch from 29 to 227.
For completeness, we also include cgRXu here. Figure 15
reports for each configuration the time per lookup, i.e., the
time it took to answer all queries divided by the number of
queries, on a logarithmic scale. First of all, we can observe that
the performance of all methods deteriorates with a decrease
in batch size — for very small batches of 29 and 212 point
lookups, the GPU becomes severely under-utilized. For batch
sizes of 215 to 227, the performance remains rather stable for
all indexes. This shows that cgRX is not more susceptible to
smaller batch sizes than the traditional baselines — in contrast,
for a batch size of 215, cgRX draws even with RX and B+
while having a significantly smaller memory footprint.

D. Varying the Hit Ratio
So far, all point lookups resulted in hits. To see the impact

of misses, we now fire a certain amount of point lookups
that do not hit an indexed key and report the accumulated
point-lookup time. We differentiate between misses that lie
within the value range of the indexed data, and ones that lie

	
�
�	
�

	
�
�

�

	
�
�

	
�

	
�
��
	
�

	
�
��
	
�

	
�
��
	
�

	
�
��
	
�

	
�
��
�
�

	
�
�

	
	
�

�
	
�
��
	
�



	
	
�
�	
�

&�'��$)� ��%��#"((�(���$,+!�'����%*)�%��'�$ ��

	

�	

	

�	

�	


		


�	

)
"#
�
��
#
(
�

� �������

� ��������

��

��

��

��

Fig. 16: Varying the hit ratio.

outside of that range. The key set consists of 32-bit keys
with uniformity 100%. Figure 16 shows the results. We

��� ��
 �� ��� 	�� 	�
 	� 	�� 
��

%�"���!������� $

�


�

��

��

��

	��

	
�

$
��
�
��
�
#
�

�������
�

������
��

��

��

��

��

Fig. 17: Varying the skew of lookups.

observe that while RX strongly benefits from misses, this is
not the case for cgRX. The reason for this is that RX is
able to abort the BVH traversal as soon as it detects that
a key is not covered by any bounding volume. This is not
possible for cgRX which always finds a representative if the
target key is within the value range. Consequently, the miss
is detected rather late during the bucket search process. This
means that cgRX should be primarily used in hit-only or hit-
mostly lookup scenarios. The last two bars show the effect of
out-of-range misses: Here, the search is trivial, and cgRX can
answer all queries quickly.

E. Varying the Lookup Skew
In all previous experiments, we picked the lookup keys

uniformly from the key range. In the following, we test the
effect of skewed lookups, which follow a Zipf distribution. We
include the uniform distribution seen so far by using a Zipf
coefficient of 0.0, and evaluate different levels of skew by
varying the coefficient from 0.25 (low skew) to 5.0 (extreme
skew). Again, we report the accumulated point-lookup time.

In Figure 17, we can observe that skew is generally benefi-
cial from a performance perspective, as it increases the chance
of cache hits and therefore reduces memory accesses. B+ is an
outlier here, where the lookup time is apparently unaffected
by skew. NVIDIA’s kernel profiler shows that the execution is
bottlenecked by the so-called address divergence unit, which
handles block synchronization and divergent branches.



	
��
��
!
#
�
"
$



��
��
!
#
�
"
$

�
��
��
!
#
�
"
$

�
��
��
!
#
�
"
$


��
��
!
#
�
"
$

�
��
��
!
#
�
"
$

�
��
��
!
#
�
"
$

�
��
��
!
#
�
"
$

�
��
��
�
��
$
�

	
�
��
��
�
��
$
�

	
	
��
��
�
��
$
�

	


��
��
�
��
$
�

	
�
��
��
�
��
$
�

	
�
��
��
�
��
$
�

	

��
��
�
��
$
�

	
�
��
��
�
��
$
�

�



	�

	


�




$
� 
�
��
 
#
�

&

�
�

&	
�
	

&	
�
�

&	
�
	

&	

�

&

�
�

&	
�
�

&

�
�

&	
�
�

&	
�
	

&

�
�

&

�
�

&

�
�

&

�
�

&

�
	

&

�
�

�������
���"��%����

������
����"��%����

����%��	����

����"��%����

��

��

(a) Applying batches of updates.

�
��
�$
&
*
!
)
+

�
��
�$
&
*
!
)
+


��
�$
&
*
!
)
+

�
��
�$
&
*
!
)
+

�
��
�$
&
*
!
)
+

�
��
�$
&
*
!
)
+

�
��
�$
&
*
!
)
+

�
��
�$
&
*
!
)
+

�
��
� 
!
%!
+
!

�


��
� 
!
%!
+
!

�
�
��
� 
!
%!
+
!

�
�
��
� 
!
%!
+
!

�

��
� 
!
%!
+
!

�
�
��
� 
!
%!
+
!

�
�
��
� 
!
%!
+
!

�
�
��
� 
!
%!
+
!


�



��

��


���

��


���

�
(
 
�
+
!
��
�
�	
�"
'
'
+
(
)
$&
+
��
!
&
+
)
$!
*
�	
��
*
�-
��
.
+
!
*
�
�

�#��������)!�,$% �

�#����������)!�,$% �

�#��,�����%�

����)!�,$% �

��

��

(b) Update throughput per mem. footprint.

�
��
��
!
�$

	
��
��
!
#
�
"
$



��
��
!
#
�
"
$

�
��
��
!
#
�
"
$

�
��
��
!
#
�
"
$


��
��
!
#
�
"
$

�
��
��
!
#
�
"
$

�
��
��
!
#
�
"
$

�
��
��
!
#
�
"
$

�
��
��
�
��
$
�

	
�
��
��
�
��
$
�

	
	
��
��
�
��
$
�

	


��
��
�
��
$
�

	
�
��
��
�
��
$
�

	
�
��
��
�
��
$
�

	

��
��
�
��
$
�

	
�
��
��
�
��
$
�

�


�

��

��

��

	��

$
� 
�
��
 
#
�

�������
���"��%����

������
����"��%����

����%��	����

����"��%����

��

��

(c) Accumulated point-lookup time.

Fig. 18: Updating cgRXu, B+, and HT compared against rebuilding cgRX and RX from scratch.

F. Updates
Finally, let us investigate how well our node-based update

mechanism in cgRXu performs. We compare it against the
alternative of rebuilding cgRX from scratch for every update
batch. Further, we include the option of rebuilding RX, which
was also the only practical way of applying updates in [1], as
well as the update mechanisms of B+ and HT.

Initially, we bulk-load all variants with 226 keys, with 100%
uniformity. Then, we fire eight waves of equally-sized inser-
tion batches, where each batch is followed by a lookup batch
of size 227. We configure these waves of insertions such that in
total, the number of entries is increased by 2.2⇥. Afterwards,
we perform eight corresponding waves of deletions, again
interleaved with lookups. We configure cgRXu with a node
size corresponding to a 128B cache line, initially filled to 50%.

Figure 18a shows the time to apply update waves for all
variants, while Figure 18b shows the ratio of update through-
put to the structure’s current memory footprint. Figure 18c
shows the time to perform lookup batches after each update
wave has been applied. We can see in 18a that cgRXu reduces
the cost of applying updates significantly by up to 5.6⇥ in
comparison to the impractical full rebuilds in cgRX. Compared
to other baselines (B+ and HT), cgRXu indicates competitive
update performance and even outperforms most baselines in
many instances. Also, the cost of updating cgRXu increases
at a slower rate than the cost of fully rebuilding. Rebuilding
RX is not an option at all, as it is an order of magnitude more
expensive than the baselines. At the same time, we can observe
in 18b that introducing a linked list of nodes to represent
buckets in cgRXu results in improved update throughput per
memory footprint, even though nodes might only be partially
occupied. However, we can also see in 18c that for update-
heavy workloads B+ and HT still perform lookups better than
cgRX and cgRXu.

VII. RELATED WORK

Apart from the original RX [1] and the recently published
RTScan (RTc1) [12], which are both baselines in this work,
there exists a line of work from other areas that exploits
hardware-accelerated raytracing. These include point contain-
ment tests [13]–[16], time-of-flight imaging [17]–[19], radius
or nearest neighbour search [20]–[22], graph rendering [23]

and tracking of particle movement in applied physics [24]–
[26]. These applications re-write their original problem into a
ray tracing task, then leverage RT-core hardware acceleration
for efficient processing. RayJoin [27] is a recent applica-
tion leveraging RT cores to accelerate spatial join queries.
In contrast to traditional relational joins, these spatial joins
require fast evaluation of line segment intersections and point-
in-polygon tests. Arkade [22] builds on prior research in k-
nearest neighbor search using ray tracing, expanding support
to include additional distance metrics such as Manhattan and
angular (cosine) distances. While these works also exploit
hardware-accelerated ray tracing creatively, they unfortunately
do not qualify as indexing baselines for this work. In terms
of indexes, many CPU data structures have been adapted to
become GPU-resident in recent years. GPU-resident indexes
include hash tables [8], [28]–[33], from which we picked our
baseline HT, but also bloom filters [8], [34], [35] and quotient
filters [36], which are suitable for set containment tests and
trade memory footprint with false-positive accuracy. Further,
radix trees [37] and comparison-based trees [9], [38]–[40]
also exist for GPUs and also provide range lookup support.
While our evaluation includes a state-of-the-art comparison-
based tree B+, unfortunately, no public implementation of
the radix trees is available at the time of writing. There also
exist GPU-resident spatial indexes such as R-Trees [41], [42],
GPU permutation indexes [43], and a GPU-resident learned
index [44]. While these would also make great baselines for
our comparisons, their codebase is not publicly accessible.

VIII. CONCLUSION

We presented cgRX, a coarse-granular GPU-resident in-
dex which exploits hardware acceleration via RT cores and
overcomes the main limitations of its fine-granular predeces-
sor RX, namely high memory footprint, poor range-lookup
performance, and bad updateability. We have shown that cgRX
provides the most bang for the buck by offering an up to
5⇥ higher throughput in relation to the memory footprint
compared to other state-of-the-art GPU-resident indexes that
support both point and range lookups. At the same time,
cgRX improves the range-lookup performance more than 15⇥
over RX. Our updatable variant cgRXu improves the update
performance by up to 5.6⇥ over rebuilding from scratch.



REFERENCES

[1] J. Henneberg and F. Schuhknecht, “RTIndeX: Exploiting hardware-
accelerated GPU raytracing for database indexing,” Proc. VLDB
Endow., vol. 16, no. 13, pp. 4268–4281, 2023. [Online]. Available:
https://www.vldb.org/pvldb/vol16/p4268-schuhknecht.pdf

[2] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton, and J. D.
Owens, “Engineering a high-performance GPU b-tree,” in Proceedings
of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2019, Washington, DC, USA, February
16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp.
145–157. [Online]. Available: https://doi.org/10.1145/3293883.3295706

[3] M. A. Awad, S. D. Porumbescu, and J. D. Owens, “A GPU
multiversion b-tree,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, PACT 2022,
Chicago, Illinois, October 8-12, 2022, A. Klöckner and J. Moreira,
Eds. ACM, 2022, pp. 481–493. [Online]. Available: https://doi.org/10.
1145/3559009.3569681

[4] D. Jünger, R. Kobus, A. Müller, C. Hundt, K. Xu, W. Liu,
and B. Schmidt, “Warpcore: A library for fast hash tables on
gpus,” in 27th IEEE International Conference on High Performance
Computing, Data, and Analytics, HiPC 2020, Pune, India, December
16-19, 2020. IEEE, 2020, pp. 11–20. [Online]. Available: https:
//doi.org/10.1109/HiPC50609.2020.00015

[5] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. P.
Luebke, D. K. McAllister, M. McGuire, R. K. Morley, A. Robison, and
M. Stich, “Optix: a general purpose ray tracing engine,” ACM Trans.
Graph., vol. 29, no. 4, pp. 66:1–66:13, 2010. [Online]. Available:
https://doi.org/10.1145/1778765.1778803

[6] N. Corporation, “Nvidia optix,” 2023, accessed: February 27, 2023.
[Online]. Available: https://developer.nvidia.com/rtx/ray-tracing/optix

[7] D. Meister and J. Bittner, “Performance comparison of bounding
volume hierarchies for GPU ray tracing,” vol. 11, no. 3, 2022. [Online].
Available: https://jcgt.org/published/0011/04/01/paper.pdf

[8] D. Jünger, R. Kobus, A. Müller, C. Hundt, K. Xu, W. Liu,
and B. Schmidt, “Warpcore: A library for fast hash tables on
gpus,” in 27th IEEE International Conference on High Performance
Computing, Data, and Analytics, HiPC 2020, Pune, India, December
16-19, 2020. IEEE, 2020, pp. 11–20. [Online]. Available: https:
//doi.org/10.1109/HiPC50609.2020.00015

[9] M. A. Awad, S. D. Porumbescu, and J. D. Owens, “A GPU
multiversion b-tree,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, PACT 2022,
Chicago, Illinois, October 8-12, 2022, A. Klöckner and J. Moreira,
Eds. ACM, 2022, pp. 481–493. [Online]. Available: https://doi.org/10.
1145/3559009.3569681

[10] O. R. Group, “Mvgpubtree: Multi-value gpu b-tree,” 2021, accessed:
February 27, 2023. [Online]. Available: https://github.com/owensgroup/
MVGpuBTree

[11] N. Corporation, “Cub,” 2022, accessed on February 27th, 2023.
[Online]. Available: https://nvlabs.github.io/cub/

[12] Y. Lv, K. Zhang, Z. Wang, X. Zhang, R. Lee, Z. He, Y. Jing, and X. S.
Wang, “Rtscan: Efficient scan with ray tracing cores,” Proc. VLDB
Endow., vol. 17, no. 6, pp. 1460–1472, 2024. [Online]. Available:
https://www.vldb.org/pvldb/vol17/p1460-lv.pdf

[13] S. Zellmann, D. Seifried, N. Morrical, I. Wald, W. Usher, J. A. P.
Law-Smith, S. Walch-Gassner, and A. Hinkenjann, “Point containment
queries on ray-tracing cores for AMR flow visualization,” Comput.
Sci. Eng., vol. 24, no. 2, pp. 40–51, 2022. [Online]. Available:
https://doi.org/10.1109/MCSE.2022.3153677

[14] N. Morrical, I. Wald, W. Usher, and V. Pascucci, “Accelerating
unstructured mesh point location with RT cores,” IEEE Trans. Vis.
Comput. Graph., vol. 28, no. 8, pp. 2852–2866, 2022. [Online].
Available: https://doi.org/10.1109/TVCG.2020.3042930

[15] I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci, “RTX
beyond ray tracing: Exploring the use of hardware ray tracing cores
for tet-mesh point location,” in High-Performance Graphics 2019 -
Short Papers, Strasbourg, France, July 8-10, 2019, M. Steinberger and
T. Foley, Eds. Eurographics Association, 2019, pp. 7–13. [Online].
Available: https://doi.org/10.2312/hpg.20191189

[16] M. Laass, “Point in polygon tests using hardware accelerated ray
tracing,” in SIGSPATIAL ’21: 29th International Conference on
Advances in Geographic Information Systems, Virtual Event / Beijing,
China, November 2-5, 2021, X. Meng, F. Wang, C. Lu, Y. Huang,

S. Shekhar, and X. Xie, Eds. ACM, 2021, pp. 666–667. [Online].
Available: https://doi.org/10.1145/3474717.3486796

[17] Q. Wang, B. Peng, Z. Cao, X. Huang, and J. Jiang, “A real-time
ultrasound simulator using monte-carlo path tracing in conjunction
with optix engine,” in 2020 IEEE International Conference on Systems,
Man, and Cybernetics, SMC 2020, Toronto, ON, Canada, October
11-14, 2020. IEEE, 2020, pp. 3661–3666. [Online]. Available:
https://doi.org/10.1109/SMC42975.2020.9283057

[18] M. Y. Martin, S. L. Winberg, M. Y. A. Gaffar, and D. MacLeod,
“The design and implementation of a ray-tracing algorithm for
signal-level pulsed radar simulation using the nvidia® optix engine,”
J. Commun., vol. 17, no. 9, pp. 761–768, 2022. [Online]. Available:
https://doi.org/10.12720/jcm.17.9.761-768

[19] P. Thoman, M. Wippler, R. Hranitzky, and T. Fahringer, “Rtx-
rsim: Accelerated vulkan room response simulation for time-of-flight
imaging,” in Proceedings of the International Workshop on OpenCL,
ser. IWOCL ’20. New York, NY, USA: Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3388333.
3388662

[20] I. Evangelou, G. Papaioannou, K. Vardis, and A. A. Vasilakis, “Fast
radius search exploiting ray tracing frameworks,” Journal of Computer
Graphics Techniques (JCGT), vol. 10, no. 1, pp. 25–48, February 2021.
[Online]. Available: http://jcgt.org/published/0010/01/02/

[21] Y. Zhu, “RTNN: accelerating neighbor search using hardware ray
tracing,” in PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Seoul, Republic of Korea, April
2 - 6, 2022, J. Lee, K. Agrawal, and M. F. Spear, Eds. ACM, 2022, pp.
76–89. [Online]. Available: https://doi.org/10.1145/3503221.3508409

[22] D. K. Mandarapu, V. Nagarajan, A. Pelenitsyn, and M. Kulkarni,
“Arkade: k-nearest neighbor search with non-euclidean distances using
gpu ray tracing,” in Proceedings of the 38th ACM International Confer-
ence on Supercomputing, 2024, pp. 14–25.

[23] S. Zellmann, M. Weier, and I. Wald, “Accelerating force-directed
graph drawing with RT cores,” in 31st IEEE Visualization Conference,
IEEE VIS 2020 - Short Papers, Virtual Event, USA, October
25-30, 2020. IEEE, 2020, pp. 96–100. [Online]. Available: https:
//doi.org/10.1109/VIS47514.2020.00026

[24] Blyth, Simon, “Meeting the challenge of juno simulation with
opticks: Gpu optical photon acceleration via nvidia optix,” EPJ
Web Conf., vol. 245, p. 11003, 2020. [Online]. Available: https:
//doi.org/10.1051/epjconf/202024511003

[25] B. Wang, I. Wald, N. Morrical, W. Usher, L. Mu, K. E. Thompson,
and R. Hughes, “An gpu-accelerated particle tracking method for
eulerian-lagrangian simulations using hardware ray tracing cores,”
Comput. Phys. Commun., vol. 271, p. 108221, 2022. [Online].
Available: https://doi.org/10.1016/j.cpc.2021.108221

[26] P. R. Bähr, B. Lang, P. Ueberholz, M. Ady, and R. Kersevan,
“Development of a hardware-accelerated simulation kernel for ultra-
high vacuum with nvidia RTX gpus,” Int. J. High Perform. Comput.
Appl., vol. 36, no. 2, pp. 141–152, 2022. [Online]. Available:
https://doi.org/10.1177/10943420211056654

[27] L. Geng, R. Lee, and X. Zhang, “Rayjoin: Fast and precise spatial
join,” in Proceedings of the 38th ACM International Conference on
Supercomputing, 2024, pp. 124–136.

[28] D. Jünger, C. Hundt, and B. Schmidt, “Warpdrive: Massively parallel
hashing on multi-gpu nodes,” in 2018 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC,
Canada, May 21-25, 2018. IEEE Computer Society, 2018, pp. 441–450.
[Online]. Available: https://doi.org/10.1109/IPDPS.2018.00054

[29] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A dynamic hash
table for the GPU,” in 2018 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21-25, 2018. IEEE Computer Society, 2018, pp. 419–429. [Online].
Available: https://doi.org/10.1109/IPDPS.2018.00052

[30] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores,” Proc. VLDB Endow., vol. 8, no. 11, pp. 1226–1237, 2015.
[Online]. Available: http://www.vldb.org/pvldb/vol8/p1226-zhang.pdf

[31] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta,
M. Mitzenmacher, J. D. Owens, and N. Amenta, “Real-time parallel
hashing on the GPU,” ACM Trans. Graph., vol. 28, no. 5, p. 154,
2009. [Online]. Available: https://doi.org/10.1145/1618452.1618500

[32] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. D.
Owens, and N. Amenta, “Chapter 4 - building an efficient hash



table on the gpu,” in GPU Computing Gems Jade Edition, ser.
Applications of GPU Computing Series, W. mei W. Hwu, Ed. Boston:
Morgan Kaufmann, 2012, pp. 39–53. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123859631000046

[33] Y. Li, Q. Zhu, Z. Lyu, Z. Huang, and J. Sun, “Dycuckoo:
Dynamic hash tables on gpus,” in 37th IEEE International Conference
on Data Engineering, ICDE 2021, Chania, Greece, April 19-
22, 2021. IEEE, 2021, pp. 744–755. [Online]. Available: https:
//doi.org/10.1109/ICDE51399.2021.00070

[34] L. B. Costa, S. Al-Kiswany, and M. Ripeanu, “GPU support for batch
oriented workloads,” in 28th International Performance Computing and
Communications Conference, IPCCC 2009, 14-16 December 2009,
Phoenix, Arizona, USA. IEEE Computer Society, 2009, pp. 231–238.
[Online]. Available: https://doi.org/10.1109/PCCC.2009.5403809

[35] M. Hayashikawa, K. Nakano, Y. Ito, and R. Yasudo, “Folded bloom
filter for high bandwidth memory, with GPU implementations,” in
2019 Seventh International Symposium on Computing and Networking,
CANDAR 2019, Nagasaki, Japan, November 25-28, 2019. IEEE, 2019,
pp. 18–27. [Online]. Available: https://doi.org/10.1109/CANDAR.2019.
00011

[36] A. Geil, M. Farach-Colton, and J. D. Owens, “Quotient filters:
Approximate membership queries on the GPU,” in 2018 IEEE
International Parallel and Distributed Processing Symposium, IPDPS
2018, Vancouver, BC, Canada, May 21-25, 2018. IEEE Computer
Society, 2018, pp. 451–462. [Online]. Available: https://doi.org/10.
1109/IPDPS.2018.00055

[37] M. M. Alam, S. B. Yoginath, and K. S. Perumalla, “Performance
of point and range queries for in-memory databases using radix
trees on gpus,” in 18th IEEE International Conference on High
Performance Computing and Communications; 14th IEEE International
Conference on Smart City; 2nd IEEE International Conference
on Data Science and Systems, HPCC/SmartCity/DSS 2016, Sydney,
Australia, December 12-14, 2016, J. Chen and L. T. Yang, Eds.
IEEE Computer Society, 2016, pp. 1493–1500. [Online]. Available:
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0212

[38] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey, “FAST: fast architecture
sensitive tree search on modern cpus and gpus,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, A. K.
Elmagarmid and D. Agrawal, Eds. ACM, 2010, pp. 339–350. [Online].
Available: https://doi.org/10.1145/1807167.1807206

[39] S. Ashkiani, S. Li, M. Farach-Colton, N. Amenta, and J. D. Owens,
“GPU LSM: A dynamic dictionary data structure for the GPU,”
in 2018 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018.
IEEE Computer Society, 2018, pp. 430–440. [Online]. Available:
https://doi.org/10.1109/IPDPS.2018.00053

[40] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton, and J. D.
Owens, “Engineering a high-performance GPU b-tree,” in Proceedings
of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2019, Washington, DC, USA, February
16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp.
145–157. [Online]. Available: https://doi.org/10.1145/3293883.3295706

[41] S. You, J. Zhang, and L. Gruenwald, “Parallel spatial query
processing on gpus using r-trees,” in Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial
Data, BigSpatial@SIGSPATIAL 2013, Nov 4th, 2013, Orlando, FL,
USA, V. Chandola and R. R. Vatsavai, Eds. ACM, 2013, pp. 23–31.
[Online]. Available: https://doi.org/10.1145/2534921.2534949

[42] S. K. Prasad, M. McDermott, X. He, and S. Puri, “Gpu-based parallel r-
tree construction and querying,” in 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop, IPDPS 2015, Hyderabad,
India, May 25-29, 2015. IEEE Computer Society, 2015, pp. 618–627.
[Online]. Available: https://doi.org/10.1109/IPDPSW.2015.127

[43] M. Lopresti, F. Piccoli, and N. Reyes, “GPU permutation index:
Good trade-off between efficiency and results quality,” in Computer
Science - CACIC 2021 - 27th Argentine Congress, CACIC 2021,
Salta, Argentina, October 4-8, 2021, Revised Selected Papers, ser.
Communications in Computer and Information Science, P. Pesado
and G. Gil, Eds., vol. 1584. Springer, 2021, pp. 183–200. [Online].
Available: https://doi.org/10.1007/978-3-031-05903-2 13

[44] X. Zhong, Y. Zhang, Y. Chen, C. Li, and C. Xing, “Learned
index on GPU,” in 38th IEEE International Conference on Data

Engineering Workshops, ICDE Workshops 2022, Kuala Lumpur,
Malaysia, May 9, 2022. IEEE, 2022, pp. 117–122. [Online].
Available: https://doi.org/10.1109/ICDEW55742.2022.00024


